

0040-4039(94)E0059-7

Boranes in Synthesis. 2. Asymmetric Synthesis of β -Amino Alcohols. A Facile Conversion of 2-Amino Acetophenones to the Corresponding β -Amino Alcohols in High Enantiomeric Purity

David A. Beardsley, Gary B. Fisher, Christian T. Goralski,[†] Lawrence W. Nicholson,[†] and Bakthan Singaram* Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA. 95064 and Pharmaceuticals Process Research and Analytical Sciences, The Dow Chemical Company, Midland, MI. 48674

Summary: The asymmetric reduction of 2-amino acetophenones with Ipc₂BH or Ipc₂BCl at -78 °C, yields the corresponding β -amino alcohols in good to excellent yields. Although only modest (12-45% ee) enantiomeric excesses were obtained with Ipc_2BH , 75-99% enantiomeric excesses were obtained when Ipc_2BCl was used as the asymmetric reducing agent.

We report herein that B-chlorodiisopinocampheylborane (Ipc₂BCl) is highly effective for the asymmetric reduction of 2-amino acetophenones, such as 2-(4-morpholino)acetophenone. A simple acid work-up furnishes the corresponding β -amino alcohols in 75 to 99% ee. The stereogenic center of the carbinol carbon is consistently enriched in the R-enantiomer when ${}^{d}Ipc2{}^{BC}l$ prepared from (+)- α -pinene is used as the asymmetric reducing agent and in the S-enantiomer when ${}^{1}Ipc_{2}BCI$ prepared from (-)- α -pinene is used (eq. 1).

Enantiomerically pure β -amino alcohols are assuming an increasingly important role in medicinal chemistry and organic synthesis. In medicinal chemistry, β -amino alcohols, such as Propranolol² and Denopamine, ² have been shown to be effective therapeutic agents, and the relationship of absolute configuration to pharmacological activity has been amply demonstrated, $1.2b.3$ most notoriously by Thalidomide.³ In organic synthesis, many important transformations of prochiral substrates into chiral compounds can be achieved in very high enantiomeric purity by utilizing a catalytic amount of an enantiomerically pure β -amino alcohol as a chiral auxiliary.⁴

There are few general asymmetric syntheses of β -amino alcohols currently available. We recently reported on the asymmetric hydroboration/oxidation of enamines as an effective asymmetric synthesis of β -amino alcohols.⁵ Other general asymmetric syntheses of β -amino alcohols involve the reduction of 2-amino ketones, utilizing either

BINAP-Ru complexes and H₂ pressures of 50-100 atmospheres^{6c} or the chiral borohydride, K-Glucoride.^{6d} We sought to develop a simple, general procedure for the synthesis of enantiomerically pure β -amino alcohols that would complement our asymmetric hydroboration/oxidation of enamines methodology.⁵ We report herein a practical and useful addition to these methodologies that requires no specialized equipment and utilizes Bchlorodiisopinocampheylborane (Ipc₂BCl) as the asymmetric reducing agent.⁷

Initially, we investigated the asymmetric reduction of Z-amino acetopbenones using diisopinocampheylborane (Ipc₂BH) as the asymmetric reducing agent. When 2-(1-pyrrolidino)acetophenone was reduced in THF at -78 \degree C with diisopinocampheylborane followed by a simple acid work-up, optically active 2-(1-pyrrolidino)-1phenylethanol was obtained in 81% isolated yield. The enantiomeric excess of the β -amino alcohols were determined by chiral HPLC of the underivatized β -amino alcohols using a Daicel brand CHIRALPAK AD chiral stationary phase.^{5c} The enantiomeric excesses found ranged from 12%-45%, and the β -amino alcohols were enriched in the *-enantiomer (eq. 2).⁸*

We then investigated the use of B -chlorodiisopinocampheylborane $(Ipc₂BCl)$. This reagent has been shown to be highly effective in the asymmetric reductions of aryl alkyl ketones, α -tertiary alkyl ketones, and β -and γ haloketones.⁷ However, the direct asymmetric reduction of 2-amino ketones with Ipc₂BCl was never attempted, even though ¹¹B-NMR published earlier^{7c} suggested that an α -amino ketone with a trisubstituted nitrogen would not complex with the Ipc₂BCl and could, therefore, be effectively reduced. Chiral γ and δ -amino alcohols were synthesized by first reducing β -halo- and γ -haloketones to the optically active halohydrins with IpczBCl and then subjecting these halohydrins to S_N2 displacement of the halide by an amine to give optically active β - and γ amino **alcohols.7d The** potent anti-depressant drugs Tomoxetine, Fluoxetine, and Nisoxetine were synthesized in high optical purity in this manner.^{7d}

When we attempted the reduction of 2-(4-morpholino)acetophenone with $Ipc₂BCl$, we found that the $Ipc₂BCl$ did, in fact, complex with the nitrogen of the 2-amino ketone, resulting in a low yield of the desired β -amino alcohol along with uncharacterized side-products. We then employed two equivalents of Ipc2BC1, reasoning that, since the first equivalent of Ipc₂BCl was complexed to the amino ketone nitrogen, a second equivalent of Ipc₂BCl **would be** necessary to effect the desired asymmetric **reduction.** We were gratified to find that this methodology gave 2-(4-morpholino)-1-phenylethanol in 82% isolated yield and >99% enantiomeric excess (eq. 3).

82% isolated **yield q3)** 99%M!

Similar results were obtained for the reductions of a variety of other 2-amino acetophenones. As expected, the absolute configuration of the product β -amino alcohol was determined by the stereochemistry of the enantiomer of α -pinene used to make the Ipc₂BCl (Table 1). ⁷

α -amino ketone	β -amino alcohol ^a	yield, ^{%b}	ee, $\%c$	abs. config. d	
$2-N$, N -diethylamino acetophenone	$2-N.N$ -diethylamino- 1-phenylethanol	85e	80	S	
2-(1-pyrrolidino)- acetophenone	2-(1-pyrrolidino)- 1-phenylethanol	81	75	R	
$2-(1-piperidino)$ - acetophenone	$2-(1-piperidino)$ - 1-phenylethanol	88c	93	S	
$2-(4$ -morpholino $)$ - acetophenone	$2-(4$ -morpholino $)$ - 1-phenylethanol	82f	99	R	
2-(1-hexamethyleneimino)- acetophenone	2-(1-hexamethyleneimino)- 1-phenylethanol	86I	77	R	

Table 1. Asymmetric Synthesis of β -Amino Alcohols By DIP-Chloride Reduction of 2-Amino Acetophenones

aFully characterized by 250 MHz lH- and t3C-NMR. btsolated yields. CEnantiomeric excesses **of the** underivatized amino alcohols determined by chiral HPLC using a Daicel CHIRALPAK AD chiral stationar phase^{5,8} or by chiroptical comparison. d Absolute configuration determined by a combination of chiral HPLC analysis5,8 and chlroptical comparison. ~Synthesized as **follows: (1)** tIpc2BCl/EB, -78 Oc, 12h; (2) cont. HC1; (3) NaOH(s). f Synthesized as follows: (1) qI_{DC2} BCl/EE, -78 °C, 12h, (2) conc. HCl; (3) NaOH(s).

General Procedure For DIP-Cl Asymmetric Reduction of 2-Amino Acetophenones. All glassware, needles, and syringes were oven-dried at $120 \,^{\circ}\text{C}$ for 24 hours prior to use and cooled to room temperature under a **nitrogen** atmosphetu. All operations were performed **under a** nitrogen atmosphere. The 2-amino acetophenones were synthesized by reacting 2-bromo acetophenone (phenacyl bromide) with one equivalent of amine in THF in the **presence of a 10% excess** of trietbylamine. The 2-bromo acetophenone was purchased **from the Aldrich Chemical Company** and used without further purification. The following procedure for the synthesis of 2-(4 morpholino)-1-phenylethanol is representative. A 30-mL Pyrex serum vial equipped with a magnetic stirring bar was charged with ${}^{d}Ipc_2BCl$ (8.0g, 25 mmol). The ${}^{d}Ipc_2BCl$ was dissolved in anhydrous diethyl ether (EE, 10 mL) and cooled to -78 Oc. 2-(4Morpholino)acetophenone (2.lg. 10 mmol) was dissolved in **anhydrous EE and** added dropwise with stirring to the ^dIpc₂BCl solution. The reaction mixture was stirred until it reached ambient temperature (-12h). The reaction was quenched with **methanol (1** mL, 25 mmol), followed **by concentrated** HCl (12M. 2 mL, 24 mmol) and stirred for an additional 30 min. The aqueous and organic fractions were separated, and the aqueous fraction was washed with hexanes $(3 \times 5 \text{ mL})$. The aqueous fraction was layered with fresh EE (-20 mL) and solid NaOH was added until the reaction mixture was strongly basic to litmus. The ether fraction was separated, the aqueous fraction was extracted with ether (3 X 5 mL), the organic fractions combined, dried over MgSO4 (anhydrous), and filtered. Crude 2-(4-morpholino)-I-phenylethanol was isolated by vacuum removal of solvent to give a pale orange powder (1.9g, 82% yield, >99% ee).

References and Notes

(1) Grayson, M.. Ed. *Kirk-Othmer Encyclopedia of Chemical* Technology, 1982.17, p. 3 1 l-345.

(2) (a) Miyano, S.; Lu, L.D.-L.; Viti, S.M.; Sharpless, K.B. J. *Org. Chem.* 1983, 48, 3608. (b) Frishman, W.H. New *Eng. J. Med.* **1981,305. 500. (c)** Lefkowitx, R.J. Ann. *Rep. Med Chem* **1980.15. 217. (d)** Corey, E.J.; Link, J.O. *J. Org. Chem.* **1991**, 56, 442.

(3) (a) Enders, D. *ChemTech 1981. Il. 504.* (b) Coppola, G-M.; Schuster, H.F. *Asymmetric Synthesis: Construction of Chiral Molecules Using Amino Acids,* Wiley-Interscience: New York, 1987, p. 1-4.

(4) (a) Tomioka, K. *Synthesis* 1990. 541. (b) Noyori. **R.;** Kitamura. M. Angew. *Chem. Znt. Ed EngL* 1991, 30, 49. (c) Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1989, 111, 6071. (d) Noyori, R.; Kitamura, M. J. Organometallic Chem. **1990**, 382, 19. (e) Oguni, N.; Matsumoto, Y.; Kaneko, T. J. Am. *Chem. Sue. 1988, ZZO, 7877. (f)* Soai, K.; Ookawa, A.; Kaba, T. J. *Am. Chem Sot.* **1987,109, 7111. (g)** Corey, E.J.; Naef, R.; Hannon, F.J. J. Am. Chem. Soc. 1986, 108, 7114. (h) Imamoto, T.; Mukaiyama, T. *Chem Lett.* 1980.45. (i) Leyendecket. F.; Laucher. D. *Tetrahedron Lett. 1983,24. 3513.*

(5) (a) Fisher, G.B.; Singaram. *B.;* Goralski, C.T.; Nicholson, L. *Abstracts of Papers,* 203rd National Meeting of the American Chemical Society, San Francisco, CA; American Chemical Society : Washington, D.C.. 1992; ORGN 251. (b) Fisher, G.B.; Singaram, B.; Goralski, C.T.; Nicholson, L. *Abstracts of Papers,* BUSA 3 Boron U.S.A. Workshop, Pullman, Washington; Washington State University, Pullman, WA, 1992; Abstract 33. (c) Fisher, G.B.; Goralski, CT.; Nicholson, L.W.; Singaram. B. *Tetrahedron Lett. 1993,34, 7693.*

(6) (a) Noyori. R.; Kitamura, M.; Ohkuma, T.; Inoue, S.; Sayo, N.; Kumobayashi, H.; Alcutagawa, *S.;* Ohta, T.; Takaya, H. J. *Am. Chem Sot. 1988, ZIO, 629.* (b) Cho, B.T.; Chun. Y.S. *Tetrahedron: Asymmetry* 1992, 3, 341.

(7) (a) Chandrasekharan, J.; Ramachandran, P.V.; Brown, H.C. *J. Org. Chem.* **1985**, 50, 5448. (b) Brown, H.C.; Chandrasekharan, J.; Ramachandran. P.V. J. *Org. Chem.* 1986, 51, 3396. (c) Brown, H.C.; Chandrasekharan, J.; Ramachandran. P.V. J. *Am. Chem. Sot. 1988, 110,* 1539. (d) Srebnik, M.; Ramachandran, P-V.; Brown, H.C. J. *Org. Chem. 1988. 53,* 2916. (e) Srebnik, M.; Ramachandran, P.V.; Brown, H.C. *J. Org. Chem.* **1989**, 54, 1577.

(8) Chiral HPLC analysis of the racemic mixtures of the corresponding β -amino alcohols gave two peaks of equal intensity.

(Received in *USA 10 November 1993; accepted 22 December 1993)*